PSCF v1.2
prdc/cuda/complex.h
1#ifndef PRDC_CUDA_COMPLEX_H
2#define PRDC_CUDA_COMPLEX_H
3
4/*
5* PSCF Package - Polymer Self-Consistent Field
6*
7* Copyright 2016 - 2023, The Regents of the University of Minnesota
8* Distributed under the terms of the GNU General Public License.
9*/
10
11#include "types.h"
12#include <pscf/math/complex.h>
13#include <complex>
14
15namespace Pscf {
16
17 /*
18 * Types cudaComplex and cudaReal are defined in prdc/cuda/types.h
19 * (in the Prdc::Cuda namespace) as aliases for cufft complex and
20 * real types. They may be either single or double precision.
21 */
22
23 // Real and imaginary components
24
32 template <> inline
33 Prdc::Cuda::cudaReal real(Prdc::Cuda::cudaComplex const& a)
34 { return a.x; }
35
43 template <> inline
44 Prdc::Cuda::cudaReal imag(Prdc::Cuda::cudaComplex const& a)
45 { return a.y; }
46
47 // Absolute magnitude
48
56 template <> inline
57 Prdc::Cuda::cudaReal abs(Prdc::Cuda::cudaComplex const& a)
58 { return sqrt(a.x * a.x + a.y * a.y); }
59
67 template <> inline
68 Prdc::Cuda::cudaReal absSq(Prdc::Cuda::cudaComplex const& a)
69 { return (a.x * a.x + a.y * a.y); }
70
71 // cudaComplex Conjugation
72
81 template <> inline
82 void conj(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a)
83 {
84 z.x = a.x;
85 z.y = -a.y;
86 }
87
95 template <> inline
96 void conj(Prdc::Cuda::cudaComplex& a)
97 {
98 a.x = a.x;
99 a.y = -a.y;
100 }
101
102 // Assignment
103
113 template <> inline
114 void assign(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaReal const& a,
115 Prdc::Cuda::cudaReal const& b)
116 {
117 z.x = a;
118 z.y = b;
119 }
120
129 template <> inline
130 void assign(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaReal const& a)
131 {
132 z.x = a;
133 z.y = 0;
134 }
135
144 template <> inline
145 void assign(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a)
146 {
147 z.x = a.x;
148 z.y = a.y;
149 }
150
159 template <> inline
160 void assign(Prdc::Cuda::cudaComplex & z,
161 std::complex<Prdc::Cuda::cudaReal> const& a)
162 {
163 z.x = a.real();
164 z.y = a.imag();
165 }
166
175 template <> inline
176 void assign(std::complex<Prdc::Cuda::cudaReal> & z,
177 Prdc::Cuda::cudaComplex const& a)
178 { z = std::complex<Prdc::Cuda::cudaReal>(a.x, a.y); }
179
180 // Addition
181
191 template <> inline
192 void add(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
193 Prdc::Cuda::cudaComplex const& b)
194 {
195 z.x = a.x + b.x;
196 z.y = a.y + b.y;
197 }
198
208 template <> inline
209 void add(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
210 Prdc::Cuda::cudaReal const& b)
211 {
212 z.x = a.x + b;
213 z.y = a.y;
214 }
215
224 template <> inline
225 void addEq(Prdc::Cuda::cudaComplex& a, Prdc::Cuda::cudaComplex const& b)
226 {
227 a.x += b.x;
228 a.y += b.y;
229 }
230
239 template <> inline
240 void addEq(Prdc::Cuda::cudaComplex& a, Prdc::Cuda::cudaReal const& b)
241 {
242 a.x += b;
243 }
244
245 // Subtraction
246
256 template <> inline
257 void sub(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
258 Prdc::Cuda::cudaComplex const& b)
259 {
260 z.x = a.x - b.x;
261 z.y = a.y - b.y;
262 }
263
273 template <> inline
274 void sub(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
275 Prdc::Cuda::cudaReal const& b)
276 {
277 z.x = a.x - b;
278 z.y = a.y;
279 }
280
289 template <> inline
290 void subEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaComplex const& b)
291 {
292 a.x -= b.x;
293 a.y -= b.y;
294 }
295
304 template <> inline
305 void subEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaReal const& b)
306 {
307 a.x -= b;
308 }
309
320 template <> inline
321 Prdc::Cuda::cudaReal absSqDiff(Prdc::Cuda::cudaComplex const& a,
322 Prdc::Cuda::cudaComplex const& b)
323 {
324 Prdc::Cuda::cudaComplex z;
325 sub(z, a, b);
327 }
328
329 // Multiplication
330
340 template <> inline
341 void mul(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
342 Prdc::Cuda::cudaComplex const& b)
343 {
344 z.x = a.x * b.x - a.y * b.y;
345 z.y = a.y * b.x + a.x * b.y;
346 }
347
357 template <> inline
358 void mul(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
359 Prdc::Cuda::cudaReal const& b)
360 {
361 z.x = a.x*b;
362 z.y = a.y*b;
363 }
364
373 template <> inline
374 void mulEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaComplex const& b)
375 {
376 Prdc::Cuda::cudaReal a0;
377 a0 = a.x * b.x - a.y * b.y;
378 a.y = a.y * b.x + a.x * b.y;
379 a.x = a0;
380 }
381
390 template <> inline
391 void mulEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaReal const& b)
392 {
393 a.x *= b;
394 a.y *= b;
395 }
396
405 template <> inline
406 void square(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a)
407 {
408 z.x = a.x * a.x - a.y * a.y;
409 z.y = 2.0 * a.y * a.x;
410 }
411
412 // Division
413
423 template <> inline
424 void div(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
425 Prdc::Cuda::cudaComplex const& b)
426 {
427 Prdc::Cuda::cudaReal bSq = b.x * b.x + b.y * b.y;
428 z.x = (a.x * b.x + a.y * b.y) / bSq;
429 z.y = (a.y * b.x - a.x * b.y) / bSq;
430 }
431
441 template <> inline
442 void div(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex const& a,
443 Prdc::Cuda::cudaReal const& b)
444 {
445 z.x = a.x / b;
446 z.y = a.y / b;
447 }
448
457 template <> inline
458 void divEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaComplex const & b)
459 {
460 Prdc::Cuda::cudaReal bSq = b.x * b.x + b.y * b.y;
461 Prdc::Cuda::cudaReal a0 = (a.x * b.x + a.y * b.y)/bSq;
462 a.y = (a.y * b.x - a.x * b.y)/bSq;
463 a.x = a0;
464 }
465
474 template <> inline
475 void divEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaReal const& b)
476 {
477 a.x /= b;
478 a.y /= b;
479 }
480
481} // Pscf
482#endif
void div(CT &z, CT const &a, CT const &b)
Division of two complex numbers, z = a / b .
void square(CT &z, CT const &a)
Compute complex square of a complex number, z = a * a.
void conj(CT &z, CT const &a)
Compute complex conjugate, z = a^*.
void divEq(CT &a, CT const &b)
In place division of two complex number, a /= b.
void subEq(CT &a, CT const &b)
In place subtraction of two complex numbers, a -= b.
RT imag(CT const &a)
Return the imaginary part of a complex number.
RT abs(CT const &a)
Return absolute magnitude of a complex number.
void mulEq(CT &a, CT const &b)
In place multiplication of two complex number, a *= b.
RT absSq(CT const &a)
Return square of absolute magnitude of a complex number.
void assign(CT &z, RT const &a, RT const &b)
Create a complex number from real and imaginary parts, z = a + ib.
void addEq(CT &a, CT const &b)
In place addition of complex numbers, a += b.
RT absSqDiff(CT const &a, CT const &b)
Return square of the absolute magnitude of a complex difference.
RT real(CT const &a)
Return the real part of a complex number.
void add(CT &z, CT const &a, CT const &b)
Addition of two complex numbers, z = a + b.
void sub(CT &z, CT const &a, CT const &b)
Subtraction of two complex numbers, z = a - b.
void mul(CT &z, CT const &a, CT const &b)
Multiplication of two complex numbers, z = a * b.
PSCF package top-level namespace.
Definition param_pc.dox:1