1#ifndef PRDC_CUDA_COMPLEX_H
2#define PRDC_CUDA_COMPLEX_H
12#include <pscf/math/complex.h>
33 Prdc::Cuda::cudaReal
real(Prdc::Cuda::cudaComplex
const& a)
44 Prdc::Cuda::cudaReal
imag(Prdc::Cuda::cudaComplex
const& a)
57 Prdc::Cuda::cudaReal
abs(Prdc::Cuda::cudaComplex
const& a)
58 {
return sqrt(a.x * a.x + a.y * a.y); }
68 Prdc::Cuda::cudaReal
absSq(Prdc::Cuda::cudaComplex
const& a)
69 {
return (a.x * a.x + a.y * a.y); }
82 void conj(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a)
96 void conj(Prdc::Cuda::cudaComplex& a)
114 void assign(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaReal
const& a,
115 Prdc::Cuda::cudaReal
const& b)
130 void assign(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaReal
const& a)
145 void assign(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a)
161 std::complex<Prdc::Cuda::cudaReal>
const& a)
176 void assign(std::complex<Prdc::Cuda::cudaReal> & z,
177 Prdc::Cuda::cudaComplex
const& a)
178 { z = std::complex<Prdc::Cuda::cudaReal>(a.x, a.y); }
192 void add(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
193 Prdc::Cuda::cudaComplex
const& b)
209 void add(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
210 Prdc::Cuda::cudaReal
const& b)
225 void addEq(Prdc::Cuda::cudaComplex& a, Prdc::Cuda::cudaComplex
const& b)
240 void addEq(Prdc::Cuda::cudaComplex& a, Prdc::Cuda::cudaReal
const& b)
257 void sub(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
258 Prdc::Cuda::cudaComplex
const& b)
274 void sub(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
275 Prdc::Cuda::cudaReal
const& b)
290 void subEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaComplex
const& b)
305 void subEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaReal
const& b)
321 Prdc::Cuda::cudaReal
absSqDiff(Prdc::Cuda::cudaComplex
const& a,
322 Prdc::Cuda::cudaComplex
const& b)
324 Prdc::Cuda::cudaComplex z;
341 void mul(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
342 Prdc::Cuda::cudaComplex
const& b)
344 z.x = a.x * b.x - a.y * b.y;
345 z.y = a.y * b.x + a.x * b.y;
358 void mul(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
359 Prdc::Cuda::cudaReal
const& b)
374 void mulEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaComplex
const& b)
376 Prdc::Cuda::cudaReal a0;
377 a0 = a.x * b.x - a.y * b.y;
378 a.y = a.y * b.x + a.x * b.y;
391 void mulEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaReal
const& b)
406 void square(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a)
408 z.x = a.x * a.x - a.y * a.y;
409 z.y = 2.0 * a.y * a.x;
424 void div(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
425 Prdc::Cuda::cudaComplex
const& b)
427 Prdc::Cuda::cudaReal bSq = b.x * b.x + b.y * b.y;
428 z.x = (a.x * b.x + a.y * b.y) / bSq;
429 z.y = (a.y * b.x - a.x * b.y) / bSq;
442 void div(Prdc::Cuda::cudaComplex& z, Prdc::Cuda::cudaComplex
const& a,
443 Prdc::Cuda::cudaReal
const& b)
458 void divEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaComplex
const & b)
460 Prdc::Cuda::cudaReal bSq = b.x * b.x + b.y * b.y;
461 Prdc::Cuda::cudaReal a0 = (a.x * b.x + a.y * b.y)/bSq;
462 a.y = (a.y * b.x - a.x * b.y)/bSq;
475 void divEq(Prdc::Cuda::cudaComplex & a, Prdc::Cuda::cudaReal
const& b)
void div(CT &z, CT const &a, CT const &b)
Division of two complex numbers, z = a / b .
void square(CT &z, CT const &a)
Compute complex square of a complex number, z = a * a.
void conj(CT &z, CT const &a)
Compute complex conjugate, z = a^*.
void divEq(CT &a, CT const &b)
In place division of two complex number, a /= b.
void subEq(CT &a, CT const &b)
In place subtraction of two complex numbers, a -= b.
RT imag(CT const &a)
Return the imaginary part of a complex number.
RT abs(CT const &a)
Return absolute magnitude of a complex number.
void mulEq(CT &a, CT const &b)
In place multiplication of two complex number, a *= b.
RT absSq(CT const &a)
Return square of absolute magnitude of a complex number.
void assign(CT &z, RT const &a, RT const &b)
Create a complex number from real and imaginary parts, z = a + ib.
void addEq(CT &a, CT const &b)
In place addition of complex numbers, a += b.
RT absSqDiff(CT const &a, CT const &b)
Return square of the absolute magnitude of a complex difference.
RT real(CT const &a)
Return the real part of a complex number.
void add(CT &z, CT const &a, CT const &b)
Addition of two complex numbers, z = a + b.
void sub(CT &z, CT const &a, CT const &b)
Subtraction of two complex numbers, z = a - b.
void mul(CT &z, CT const &a, CT const &b)
Multiplication of two complex numbers, z = a * b.
PSCF package top-level namespace.