PSCF v1.1
|
Crystal Unit Cells (Prev) Thin Films (Next)
The PSCF programs that are designed to simulate periodic structures use algorithms that constrain the chemical potential fields to be symmetric under all operations of a specified crystallographic space group. Each possible space group is identified in PSCF by a unique identifer string.
The space group identifiers used in PSCF are ASCII strings with no white space that are constructed as mangled forms of the Hermann Mauguin space group names that are used in the international tables of crystallography. Each PSCF space group identifier is also the name of a file that contain a description of the space group. The international symbols cannot be used for this purpose because they contain typset elements such as subscripts and overbars that cannot be represented using an ascii character set. The following rules are used to convert Hermann Mauguin names into PSCF ascii space group identifiers:
Files that contain descriptions of all possible crystallographic space groups are stored in the data/groups directory of the main pscfpp directory. Descriptions of space groups for 1D, 2D and 3D crystals are stored in subdirectories named 1/, 2/ and 3/, respectively. The name of each such file is given by the PSCF identifier for the associated space group. One can thus scan through the names of files in these directories to find identifiers for all standard space groups.
Each file that describes a space group contains a list of descriptions for all the symmetry operations of the group. Each symmetry operation is represented by a matrix and a vector. A matrix with integer elements is used to represent a linear transformation of coordinates caused by a point group operation (e.g., a reflection, rotation, or inversion) in which coordinates are defined using a basis of Bravais lattice basis vectors. A vector with elements given by rational numbers (fractions) is used to represent a translation, in which each element represents a translation parallel to a Bravais lattice basis vector by some fraction of a unit cell.
Identifier strings for all of the standard 1D, 2D and 3D space groups are listed below:
There are only two possible symmetry groups for one-dimensionally periodic structures: Space group P_-1
has an inversion center at the origin, giving centrosymmetric lamellar structures, while space group P_1
does not, allowing non-centrosymmetric structures.
Group identifiers:
Number | Symbol | Comments |
---|---|---|
1 | P_-1 | Inversion symmetry |
2 | P_1 | No symmetry |
There are 17 possible 2D symmetry groups, also known as plane groups.
Group identifiers:
Number | Symbol | Lattice System |
---|---|---|
1 | p_1 | oblique |
2 | p_2 | oblique |
3 | p_m | rectangular |
4 | p_g | rectangular |
5 | c_m | rectangular |
6 | p_2_m_m | rectangular |
7 | p_2_m_g | rectangular |
8 | p_2_g_g | rectangular |
9 | c_2_m_m | rectangular |
10 | p_4 | square |
11 | p_4_m_m | square |
12 | p_4_g_m | square |
13 | p_3 | hexagonal |
14 | p_3_m_1 | hexagonal |
15 | p_3_1_m | hexagonal |
16 | p_6 | hexagonal |
17 | p_6_m_m | hexagonal |
There are 230 possible 3D space groups. The international crystallographic tables lists 2 "settings" for some space groups, which differ in the convention for the placement of the origin. PSCF identifiers for space groups for which two or more settings are listed end in a colon followed by an integer id (1 or 2) for the setting. Trigonal groups that may be represented using either a hexagonal or rhombohedral Bravais lattice sometimes have two settings distinguished by subscripts "H" or "R".
Group identifiers:
Number | Symbol | Crystal System |
---|---|---|
1 | P_1 | Triclinic |
2 | P_-1 | Triclinic |
3 | P_1_2_1 | Monoclinic |
4 | P_1_21_1 | Monoclinic |
5 | C_1_2_1 | Monoclinic |
6 | P_1_m_1 | Monoclinic |
7 | P_1_c_1 | Monoclinic |
8 | C_1_m_1 | Monoclinic |
9 | C_1_c_1 | Monoclinic |
10 | P_1_2%m_1 | Monoclinic |
11 | P_1_21%m_1 | Monoclinic |
12 | C_1_2%m_1 | Monoclinic |
13 | P_1_2%c_1 | Monoclinic |
14 | P_1_21%c_1 | Monoclinic |
15 | C_1_2%c_1 | Monoclinic |
16 | P_2_2_2 | Orthorhombic |
17 | P_2_2_21 | Orthorhombic |
18 | P_21_21_2 | Orthorhombic |
19 | P_21_21_21 | Orthorhombic |
20 | C_2_2_21 | Orthorhombic |
21 | C_2_2_2 | Orthorhombic |
22 | F_2_2_2 | Orthorhombic |
23 | I_2_2_2 | Orthorhombic |
24 | I_21_21_21 | Orthorhombic |
25 | P_m_m_2 | Orthorhombic |
26 | P_m_c_21 | Orthorhombic |
27 | P_c_c_2 | Orthorhombic |
28 | P_m_a_2 | Orthorhombic |
29 | P_c_a_21 | Orthorhombic |
30 | P_n_c_2 | Orthorhombic |
31 | P_m_n_21 | Orthorhombic |
32 | P_b_a_2 | Orthorhombic |
33 | P_n_a_21 | Orthorhombic |
34 | P_n_n_2 | Orthorhombic |
35 | C_m_m_2 | Orthorhombic |
36 | C_m_c_21 | Orthorhombic |
37 | C_c_c_2 | Orthorhombic |
38 | A_m_m_2 | Orthorhombic |
39 | A b_m_2 | Orthorhombic |
40 | A_m_a_2 | Orthorhombic |
41 | A b_a_2 | Orthorhombic |
42 | F_m_m_2 | Orthorhombic |
43 | F_d_d_2 | Orthorhombic |
44 | I_m_m_2 | Orthorhombic |
45 | I_b_a_2 | Orthorhombic |
46 | I_m_a_2 | Orthorhombic |
47 | P_m_m_m | Orthorhombic |
48 | P_n_n_n:2 | Orthorhombic |
48 | P_n_n_n:1 | Orthorhombic |
49 | P_c_c_m | Orthorhombic |
50 | P_b_a_n:2 | Orthorhombic |
50 | P_b_a_n:1 | Orthorhombic |
51 | P_m_m_a | Orthorhombic |
52 | P_n_n_a | Orthorhombic |
53 | P_m_n_a | Orthorhombic |
54 | P_c_c_a | Orthorhombic |
55 | P_b_a_m | Orthorhombic |
56 | P_c_c_n | Orthorhombic |
57 | P_b_c_m | Orthorhombic |
58 | P_n_n_m | Orthorhombic |
59 | P_m_m_n:2 | Orthorhombic |
59 | P_m_m_n:1 | Orthorhombic |
60 | P_b_c_n | Orthorhombic |
61 | P_b_c_a | Orthorhombic |
62 | P_n_m_a | Orthorhombic |
63 | C_m_c_m | Orthorhombic |
64 | C_m_c_a | Orthorhombic |
65 | C_m_m_m | Orthorhombic |
66 | C_c_c_m | Orthorhombic |
67 | C_m_m_a | Orthorhombic |
68 | C_c_c_a:2 | Orthorhombic |
68 | C_c_c_a:1 | Orthorhombic |
69 | F_m_m_m | Orthorhombic |
70 | F_d_d_d_:2 | Orthorhombic |
70 | F_d_d_d_:1 | Orthorhombic |
71 | I_m_m_m | Orthorhombic |
72 | I_b_a_m | Orthorhombic |
73 | I_b_c_a | Orthorhombic |
74 | I_m_m_a | Orthorhombic |
75 | P_4 | Tetragonal |
76 | P_41 | Tetragonal |
77 | P_42 | Tetragonal |
78 | P_43 | Tetragonal |
79 | I_4 | Tetragonal |
80 | I_41 | Tetragonal |
81 | P_-4 | Tetragonal |
82 | I_-4 | Tetragonal |
83 | P_4%m | Tetragonal |
84 | P_42%m | Tetragonal |
85 | P_4%n:2 | Tetragonal |
85 | P_4%n:1 | Tetragonal |
86 | P_42%n:2 | Tetragonal |
86 | P_42%n:1 | Tetragonal |
87 | I_4%m | Tetragonal |
88 | I_41%a:2 | Tetragonal |
88 | I_41%a:1 | Tetragonal |
89 | P_4_2_2 | Tetragonal |
90 | P_4_21_2 | Tetragonal |
91 | P_41_2_2 | Tetragonal |
92 | P_41_21_2 | Tetragonal |
93 | P_42_2_2 | Tetragonal |
94 | P_42_21_2 | Tetragonal |
95 | P_43_2_2 | Tetragonal |
96 | P_43_21_2 | Tetragonal |
97 | I_4_2_2 | Tetragonal |
98 | I_41_2_2 | Tetragonal |
99 | P_4_m_m | Tetragonal |
100 | P_4_b_m | Tetragonal |
101 | P_42_c_m | Tetragonal |
102 | P_42_n_m | Tetragonal |
103 | P_4_c_c | Tetragonal |
104 | P_4_n_c | Tetragonal |
105 | P_42_m_c | Tetragonal |
106 | P_42_b_c | Tetragonal |
107 | I_4_m_m | Tetragonal |
108 | I_4_c_m | Tetragonal |
109 | I_41_m_d | Tetragonal |
110 | I_41_c_d | Tetragonal |
111 | P_-4_2_m | Tetragonal |
112 | P_-4_2_c | Tetragonal |
113 | P_-4_21_m | Tetragonal |
114 | P_-4_21_c | Tetragonal |
115 | P_-4_m_2 | Tetragonal |
116 | P_-4_c_2 | Tetragonal |
117 | P_-4 b 2 | Tetragonal |
118 | P_-4_n_2 | Tetragonal |
119 | I_-4_m_2 | Tetragonal |
120 | I_-4_c_2 | Tetragonal |
121 | I_-4_2_m | Tetragonal |
122 | I_-4_2_d | Tetragonal |
123 | P_4%m_m_m | Tetragonal |
124 | P_4%m_c_c | Tetragonal |
125 | P_4%n_b_m:2 | Tetragonal |
125 | P_4%n_b_m:1 | Tetragonal |
126 | P_4%n_n_c:2 | Tetragonal |
126 | P_4%n_n_c:1 | Tetragonal |
127 | P_4%m_b_m | Tetragonal |
128 | P_4%m_n_c | Tetragonal |
129 | P_4%n_m_m:2 | Tetragonal |
129 | P_4%n_m_m:1 | Tetragonal |
130 | P_4%n_c_c:2 | Tetragonal |
130 | P_4%n_c_c:1 | Tetragonal |
131 | P_42%m_m_c | Tetragonal |
132 | P_42%m_c_m | Tetragonal |
133 | P_42%n_b_c:2 | Tetragonal |
133 | P_42%n_b_c:1 | Tetragonal |
134 | P_42%n_n_m:2 | Tetragonal |
134 | P_42%n_n_m:1 | Tetragonal |
135 | P_42%m_b_c | Tetragonal |
136 | P_42%m_n_m | Tetragonal |
137 | P_42%n_m_c:2 | Tetragonal |
137 | P_42%n_m_c:1 | Tetragonal |
138 | P_42%n_c_m:2 | Tetragonal |
138 | P_42%n_c_m:1 | Tetragonal |
139 | I_4%m_m_m | Tetragonal |
140 | I_4%m_c_m | Tetragonal |
141 | I_41%a_m_d:2 | Tetragonal |
141 | I_41%a_m_d:1 | Tetragonal |
142 | I_41%a_c_d:2 | Tetragonal |
142 | I_41%a_c_d:1 | Tetragonal |
143 | P_3 | Trigonal |
144 | P_31 | Trigonal |
145 | P_32 | Trigonal |
146 | R_3:H | Trigonal |
146 | R_3:R | Trigonal |
147 | P_-3 | Trigonal |
148 | R_-3:H | Trigonal |
148 | R_-3:R | Trigonal |
149 | P_3_1_2 | Trigonal |
150 | P_3_2_1 | Trigonal |
151 | P_31_1_2 | Trigonal |
152 | P_31_2_1 | Trigonal |
153 | P_32_1_2 | Trigonal |
154 | P_32_2_1 | Trigonal |
155 | R_3_2:H | Trigonal |
155 | R_3_2:R | Trigonal |
156 | P_3_m_1 | Trigonal |
157 | P_3_1_m | Trigonal |
158 | P_3_c_1 | Trigonal |
159 | P_3_1_c | Trigonal |
160 | R_3_m:H | Trigonal |
160 | R_3_m:R | Trigonal |
161 | R_3_c:H | Trigonal |
161 | R_3_c:R | Trigonal |
162 | P_-3_1_m | Trigonal |
163 | P_-3_1_c | Trigonal |
164 | P_-3_m_1 | Trigonal |
165 | P_-3_c_1 | Trigonal |
166 | R_-3_m:H | Trigonal |
166 | R_-3_m:R | Trigonal |
167 | R_-3_c:H | Trigonal |
167 | R_-3_c:R | Trigonal |
168 | P_6 | Hexagonal |
169 | P_61 | Hexagonal |
170 | P_65 | Hexagonal |
171 | P_62 | Hexagonal |
172 | P_64 | Hexagonal |
173 | P_63 | Hexagonal |
174 | P_-6 | Hexagonal |
175 | P_6%m | Hexagonal |
176 | P_63%m | Hexagonal |
177 | P_6_2_2 | Hexagonal |
178 | P_61_2_2 | Hexagonal |
179 | P_65_2_2 | Hexagonal |
180 | P_62_2_2 | Hexagonal |
181 | P_64_2_2 | Hexagonal |
182 | P_63_2_2 | Hexagonal |
183 | P_6_m_m | Hexagonal |
184 | P_6_c_c | Hexagonal |
185 | P_63_c_m | Hexagonal |
186 | P_63_m_c | Hexagonal |
187 | P_-6_m_2 | Hexagonal |
188 | P_-6_c_2 | Hexagonal |
189 | P_-6 2_m | Hexagonal |
190 | P_-6 2_c | Hexagonal |
191 | P_6%m_m_m | Hexagonal |
192 | P_6%m_c_c | Hexagonal |
193 | P_63%m_c_m | Hexagonal |
194 | P_63%m_m_c | Hexagonal |
195 | P_2_3 | Cubic |
196 | F_2_3 | Cubic |
197 | I_2_3 | Cubic |
198 | P_21 3 | Cubic |
199 | I_21 3 | Cubic |
200 | P_m_-3 | Cubic |
201 | P_n_-3:2 | Cubic |
201 | P_n_-3:1 | Cubic |
202 | F_m_-3 | Cubic |
203 | F_d_-3:2 | Cubic |
203 | F_d_-3:1 | Cubic |
204 | I_m_-3 | Cubic |
205 | P_a_-3 | Cubic |
206 | I_a_-3 | Cubic |
207 | P_4_3_2 | Cubic |
208 | P_42_3_2 | Cubic |
209 | F_4_3_2 | Cubic |
210 | F_41_3_2 | Cubic |
211 | I_4_3_2 | Cubic |
212 | P_43_3_2 | Cubic |
213 | P_41_3_2 | Cubic |
214 | I_41_3_2 | Cubic |
215 | P_-4_3_m | Cubic |
216 | F_-4_3_m | Cubic |
217 | I_-4_3_m | Cubic |
218 | P_-4_3_n | Cubic |
219 | F_-4_3_c | Cubic |
220 | I_-4_3_d | Cubic |
221 | P_m_-3_m | Cubic |
222 | P_n_-3_n:2 | Cubic |
222 | P_n_-3_n:1 | Cubic |
223 | P_m_-3_n | Cubic |
224 | P_n_-3_m:2 | Cubic |
224 | P_n_-3_m:1 | Cubic |
225 | F_m_-3_m | Cubic |
226 | F_m_-3_c | Cubic |
227 | F_d_-3_m:2 | Cubic |
227 | F_d_-3_m:1 | Cubic |
228 | F_d_-3_c:2 | Cubic |
228 | F_d_-3_c:1 | Cubic |
229 | I_m_-3_m | Cubic |
230 | I a_-3_d | Cubic |
Crystal Unit Cells (Prev) User Guide (Up) Thin Films (Next)