PSCF v1.1
Space Groups

Crystal Unit Cells (Prev)         Thin Films (Next)

The PSCF programs that are designed to simulate periodic structures use algorithms that constrain the chemical potential fields to be symmetric under all operations of a specified crystallographic space group. Each possible space group is identified in PSCF by a unique identifer string.

Space Group Identifier Strings

The space group identifiers used in PSCF are ASCII strings with no white space that are constructed as mangled forms of the Hermann Mauguin space group names that are used in the international tables of crystallography. Each PSCF space group identifier is also the name of a file that contain a description of the space group. The international symbols cannot be used for this purpose because they contain typset elements such as subscripts and overbars that cannot be represented using an ascii character set. The following rules are used to convert Hermann Mauguin names into PSCF ascii space group identifiers:

  • Logical elements of the Hermann Mauguin space group name are separated by underbars (_). For example, I_m_m_a is the PSCF identifier for space group \(Imma\).
  • Each overbar symbol in the Hermann Mauguin name is replaced by a "-" that appears as prefix to the overbarred symbol. For example, I_a_-3_d is the PSCF identifier for space group \(Ia\overline{3}d\), which is the space group of the double gyroid phase of a diblock copolymer.
  • Elements in which a single digit number appears as a subcript to another such number are listed as pairs of numbers with no intervening space, in which the second number in the pair is the subcript. For example, P_43_2_2 is the PSCF identifier for space group \(P4_{3}22\).
  • Each slash ("/") in a Hermann Mauguin name is replaced by a percent sign ("%") symbol. For example P_4%m_m_m is the PSCF identifier for space group \(P4/mmm\).
  • Different possible settings of a space group (e.g., due to different choices of origin) are indicated by a a colon (":") followed by a single digit or letter at the end of the space group name. For example F_d_-3_m:2 is the PSCF identifier for setting 2 of space group \(Fd\overline{3}m\), which has two settings labelled "1" and "2". Some space groups for crystals in the trigonal crystal system can be represented using either a hexagonal or rhombohedral Bravais lattice, which are identified with names that end in suffixes ":H" or ":R", respectively. Such setting labels are only used for space groups for which two or more setting are listed in the international tables.

Files that contain descriptions of all possible crystallographic space groups are stored in the data/groups directory of the main pscfpp directory. Descriptions of space groups for 1D, 2D and 3D crystals are stored in subdirectories named 1/, 2/ and 3/, respectively. The name of each such file is given by the PSCF identifier for the associated space group. One can thus scan through the names of files in these directories to find identifiers for all standard space groups.

Each file that describes a space group contains a list of descriptions for all the symmetry operations of the group. Each symmetry operation is represented by a matrix and a vector. A matrix with integer elements is used to represent a linear transformation of coordinates caused by a point group operation (e.g., a reflection, rotation, or inversion) in which coordinates are defined using a basis of Bravais lattice basis vectors. A vector with elements given by rational numbers (fractions) is used to represent a translation, in which each element represents a translation parallel to a Bravais lattice basis vector by some fraction of a unit cell.

Identifier strings for all of the standard 1D, 2D and 3D space groups are listed below:

1D Space Groups

There are only two possible symmetry groups for one-dimensionally periodic structures: Space group P_-1 has an inversion center at the origin, giving centrosymmetric lamellar structures, while space group P_1 does not, allowing non-centrosymmetric structures.

Group identifiers:

Number Symbol Comments
1 P_-1 Inversion symmetry
2 P_1 No symmetry

2D Space Groups

There are 17 possible 2D symmetry groups, also known as plane groups.

Group identifiers:

Number Symbol Lattice System
1 p_1 oblique
2 p_2 oblique
3 p_m rectangular
4 p_g rectangular
5 c_m rectangular
6 p_2_m_m rectangular
7 p_2_m_g rectangular
8 p_2_g_g rectangular
9 c_2_m_m rectangular
10 p_4 square
11 p_4_m_m square
12 p_4_g_m square
13 p_3 hexagonal
14 p_3_m_1 hexagonal
15 p_3_1_m hexagonal
16 p_6 hexagonal
17 p_6_m_m hexagonal

3D Space Groups

There are 230 possible 3D space groups. The international crystallographic tables lists 2 "settings" for some space groups, which differ in the convention for the placement of the origin. PSCF identifiers for space groups for which two or more settings are listed end in a colon followed by an integer id (1 or 2) for the setting. Trigonal groups that may be represented using either a hexagonal or rhombohedral Bravais lattice sometimes have two settings distinguished by subscripts "H" or "R".

Group identifiers:

Number Symbol Crystal System
1 P_1 Triclinic
2 P_-1 Triclinic
3 P_1_2_1 Monoclinic
4 P_1_21_1 Monoclinic
5 C_1_2_1 Monoclinic
6 P_1_m_1 Monoclinic
7 P_1_c_1 Monoclinic
8 C_1_m_1 Monoclinic
9 C_1_c_1 Monoclinic
10 P_1_2%m_1 Monoclinic
11 P_1_21%m_1 Monoclinic
12 C_1_2%m_1 Monoclinic
13 P_1_2%c_1 Monoclinic
14 P_1_21%c_1 Monoclinic
15 C_1_2%c_1 Monoclinic
16 P_2_2_2 Orthorhombic
17 P_2_2_21 Orthorhombic
18 P_21_21_2 Orthorhombic
19 P_21_21_21 Orthorhombic
20 C_2_2_21 Orthorhombic
21 C_2_2_2 Orthorhombic
22 F_2_2_2 Orthorhombic
23 I_2_2_2 Orthorhombic
24 I_21_21_21 Orthorhombic
25 P_m_m_2 Orthorhombic
26 P_m_c_21 Orthorhombic
27 P_c_c_2 Orthorhombic
28 P_m_a_2 Orthorhombic
29 P_c_a_21 Orthorhombic
30 P_n_c_2 Orthorhombic
31 P_m_n_21 Orthorhombic
32 P_b_a_2 Orthorhombic
33 P_n_a_21 Orthorhombic
34 P_n_n_2 Orthorhombic
35 C_m_m_2 Orthorhombic
36 C_m_c_21 Orthorhombic
37 C_c_c_2 Orthorhombic
38 A_m_m_2 Orthorhombic
39 A b_m_2 Orthorhombic
40 A_m_a_2 Orthorhombic
41 A b_a_2 Orthorhombic
42 F_m_m_2 Orthorhombic
43 F_d_d_2 Orthorhombic
44 I_m_m_2 Orthorhombic
45 I_b_a_2 Orthorhombic
46 I_m_a_2 Orthorhombic
47 P_m_m_m Orthorhombic
48 P_n_n_n:2 Orthorhombic
48 P_n_n_n:1 Orthorhombic
49 P_c_c_m Orthorhombic
50 P_b_a_n:2 Orthorhombic
50 P_b_a_n:1 Orthorhombic
51 P_m_m_a Orthorhombic
52 P_n_n_a Orthorhombic
53 P_m_n_a Orthorhombic
54 P_c_c_a Orthorhombic
55 P_b_a_m Orthorhombic
56 P_c_c_n Orthorhombic
57 P_b_c_m Orthorhombic
58 P_n_n_m Orthorhombic
59 P_m_m_n:2 Orthorhombic
59 P_m_m_n:1 Orthorhombic
60 P_b_c_n Orthorhombic
61 P_b_c_a Orthorhombic
62 P_n_m_a Orthorhombic
63 C_m_c_m Orthorhombic
64 C_m_c_a Orthorhombic
65 C_m_m_m Orthorhombic
66 C_c_c_m Orthorhombic
67 C_m_m_a Orthorhombic
68 C_c_c_a:2 Orthorhombic
68 C_c_c_a:1 Orthorhombic
69 F_m_m_m Orthorhombic
70 F_d_d_d_:2 Orthorhombic
70 F_d_d_d_:1 Orthorhombic
71 I_m_m_m Orthorhombic
72 I_b_a_m Orthorhombic
73 I_b_c_a Orthorhombic
74 I_m_m_a Orthorhombic
75 P_4 Tetragonal
76 P_41 Tetragonal
77 P_42 Tetragonal
78 P_43 Tetragonal
79 I_4 Tetragonal
80 I_41 Tetragonal
81 P_-4 Tetragonal
82 I_-4 Tetragonal
83 P_4%m Tetragonal
84 P_42%m Tetragonal
85 P_4%n:2 Tetragonal
85 P_4%n:1 Tetragonal
86 P_42%n:2 Tetragonal
86 P_42%n:1 Tetragonal
87 I_4%m Tetragonal
88 I_41%a:2 Tetragonal
88 I_41%a:1 Tetragonal
89 P_4_2_2 Tetragonal
90 P_4_21_2 Tetragonal
91 P_41_2_2 Tetragonal
92 P_41_21_2 Tetragonal
93 P_42_2_2 Tetragonal
94 P_42_21_2 Tetragonal
95 P_43_2_2 Tetragonal
96 P_43_21_2 Tetragonal
97 I_4_2_2 Tetragonal
98 I_41_2_2 Tetragonal
99 P_4_m_m Tetragonal
100 P_4_b_m Tetragonal
101 P_42_c_m Tetragonal
102 P_42_n_m Tetragonal
103 P_4_c_c Tetragonal
104 P_4_n_c Tetragonal
105 P_42_m_c Tetragonal
106 P_42_b_c Tetragonal
107 I_4_m_m Tetragonal
108 I_4_c_m Tetragonal
109 I_41_m_d Tetragonal
110 I_41_c_d Tetragonal
111 P_-4_2_m Tetragonal
112 P_-4_2_c Tetragonal
113 P_-4_21_m Tetragonal
114 P_-4_21_c Tetragonal
115 P_-4_m_2 Tetragonal
116 P_-4_c_2 Tetragonal
117 P_-4 b 2 Tetragonal
118 P_-4_n_2 Tetragonal
119 I_-4_m_2 Tetragonal
120 I_-4_c_2 Tetragonal
121 I_-4_2_m Tetragonal
122 I_-4_2_d Tetragonal
123 P_4%m_m_m Tetragonal
124 P_4%m_c_c Tetragonal
125 P_4%n_b_m:2 Tetragonal
125 P_4%n_b_m:1 Tetragonal
126 P_4%n_n_c:2 Tetragonal
126 P_4%n_n_c:1 Tetragonal
127 P_4%m_b_m Tetragonal
128 P_4%m_n_c Tetragonal
129 P_4%n_m_m:2 Tetragonal
129 P_4%n_m_m:1 Tetragonal
130 P_4%n_c_c:2 Tetragonal
130 P_4%n_c_c:1 Tetragonal
131 P_42%m_m_c Tetragonal
132 P_42%m_c_m Tetragonal
133 P_42%n_b_c:2 Tetragonal
133 P_42%n_b_c:1 Tetragonal
134 P_42%n_n_m:2 Tetragonal
134 P_42%n_n_m:1 Tetragonal
135 P_42%m_b_c Tetragonal
136 P_42%m_n_m Tetragonal
137 P_42%n_m_c:2 Tetragonal
137 P_42%n_m_c:1 Tetragonal
138 P_42%n_c_m:2 Tetragonal
138 P_42%n_c_m:1 Tetragonal
139 I_4%m_m_m Tetragonal
140 I_4%m_c_m Tetragonal
141 I_41%a_m_d:2 Tetragonal
141 I_41%a_m_d:1 Tetragonal
142 I_41%a_c_d:2 Tetragonal
142 I_41%a_c_d:1 Tetragonal
143 P_3 Trigonal
144 P_31 Trigonal
145 P_32 Trigonal
146 R_3:H Trigonal
146 R_3:R Trigonal
147 P_-3 Trigonal
148 R_-3:H Trigonal
148 R_-3:R Trigonal
149 P_3_1_2 Trigonal
150 P_3_2_1 Trigonal
151 P_31_1_2 Trigonal
152 P_31_2_1 Trigonal
153 P_32_1_2 Trigonal
154 P_32_2_1 Trigonal
155 R_3_2:H Trigonal
155 R_3_2:R Trigonal
156 P_3_m_1 Trigonal
157 P_3_1_m Trigonal
158 P_3_c_1 Trigonal
159 P_3_1_c Trigonal
160 R_3_m:H Trigonal
160 R_3_m:R Trigonal
161 R_3_c:H Trigonal
161 R_3_c:R Trigonal
162 P_-3_1_m Trigonal
163 P_-3_1_c Trigonal
164 P_-3_m_1 Trigonal
165 P_-3_c_1 Trigonal
166 R_-3_m:H Trigonal
166 R_-3_m:R Trigonal
167 R_-3_c:H Trigonal
167 R_-3_c:R Trigonal
168 P_6 Hexagonal
169 P_61 Hexagonal
170 P_65 Hexagonal
171 P_62 Hexagonal
172 P_64 Hexagonal
173 P_63 Hexagonal
174 P_-6 Hexagonal
175 P_6%m Hexagonal
176 P_63%m Hexagonal
177 P_6_2_2 Hexagonal
178 P_61_2_2 Hexagonal
179 P_65_2_2 Hexagonal
180 P_62_2_2 Hexagonal
181 P_64_2_2 Hexagonal
182 P_63_2_2 Hexagonal
183 P_6_m_m Hexagonal
184 P_6_c_c Hexagonal
185 P_63_c_m Hexagonal
186 P_63_m_c Hexagonal
187 P_-6_m_2 Hexagonal
188 P_-6_c_2 Hexagonal
189 P_-6 2_m Hexagonal
190 P_-6 2_c Hexagonal
191 P_6%m_m_m Hexagonal
192 P_6%m_c_c Hexagonal
193 P_63%m_c_m Hexagonal
194 P_63%m_m_c Hexagonal
195 P_2_3 Cubic
196 F_2_3 Cubic
197 I_2_3 Cubic
198 P_21 3 Cubic
199 I_21 3 Cubic
200 P_m_-3 Cubic
201 P_n_-3:2 Cubic
201 P_n_-3:1 Cubic
202 F_m_-3 Cubic
203 F_d_-3:2 Cubic
203 F_d_-3:1 Cubic
204 I_m_-3 Cubic
205 P_a_-3 Cubic
206 I_a_-3 Cubic
207 P_4_3_2 Cubic
208 P_42_3_2 Cubic
209 F_4_3_2 Cubic
210 F_41_3_2 Cubic
211 I_4_3_2 Cubic
212 P_43_3_2 Cubic
213 P_41_3_2 Cubic
214 I_41_3_2 Cubic
215 P_-4_3_m Cubic
216 F_-4_3_m Cubic
217 I_-4_3_m Cubic
218 P_-4_3_n Cubic
219 F_-4_3_c Cubic
220 I_-4_3_d Cubic
221 P_m_-3_m Cubic
222 P_n_-3_n:2 Cubic
222 P_n_-3_n:1 Cubic
223 P_m_-3_n Cubic
224 P_n_-3_m:2 Cubic
224 P_n_-3_m:1 Cubic
225 F_m_-3_m Cubic
226 F_m_-3_c Cubic
227 F_d_-3_m:2 Cubic
227 F_d_-3_m:1 Cubic
228 F_d_-3_c:2 Cubic
228 F_d_-3_c:1 Cubic
229 I_m_-3_m Cubic
230 I a_-3_d Cubic


Crystal Unit Cells (Prev)         User Guide (Up)         Thin Films (Next)