PSCF v1.2
Pscf::Rpc::Simulator< D > Class Template Reference

Field theoretic simulator (base class). More...

#include <Simulator.h>

Inheritance diagram for Pscf::Rpc::Simulator< D >:
Util::ParamComposite Util::ParamComponent Util::Serializable Util::MpiFileIo Pscf::Rpc::BdSimulator< D > Pscf::Rpc::McSimulator< D >

Public Member Functions

 Simulator (System< D > &system)
 Constructor.
 
 ~Simulator ()
 Destructor.
 
void allocate ()
 Allocate required memory.
 
virtual void readParameters (std::istream &in)
 Read parameters for a simulation.
 
Primary Actions: Simulation and Analysis
virtual void simulate (int nStep)
 Perform a field theoretic Monte-Carlo simulation.
 
virtual void analyze (int min, int max, std::string classname, std::string filename)
 Read and analyze a trajectory file.
 
void clearData ()
 Clear field eigen-components and hamiltonian components.
 
Timers and Counters
virtual void outputTimers (std::ostream &out)
 Output timing results.
 
virtual void outputMdeCounter (std::ostream &out)
 Output MDE counter.
 
virtual void clearTimers ()
 Clear timers.
 
long iStep ()
 Return the current converged simulation step index.
 
long iTotalStep ()
 Return the current simulation step index.
 
Projected Chi Matrix
void analyzeChi ()
 Perform eigenvalue analysis of projected chi matrix.
 
DArray< double > const & chiEvals () const
 Get an array of the eigenvalues of the projected chi matrix.
 
double chiEval (int a) const
 Get a single eigenvalue of the projected chi matrix.
 
DMatrix< double > const & chiEvecs () const
 Get the matrix of all eigenvectors of the projected chi matrix.
 
double chiEvecs (int a, int i) const
 Get one element of an eigenvector of the projected chi matrix.
 
DArray< double > const & sc () const
 Get all components of the vector S.
 
double sc (int a) const
 Get a single component of the S vector.
 
Field Theoretic Hamiltonian


void computeHamiltonian ()
 Compute the Hamiltonian used in PS-FTS.
 
double hamiltonian () const
 Get the Hamiltonian used in PS-FTS.
 
double idealHamiltonian () const
 Get ideal gas contribution to the Hamiltonian.
 
double fieldHamiltonian () const
 Get the quadratic field contribution to the Hamiltonian.
 
double perturbationHamiltonian () const
 Get the perturbation to the standard Hamiltonian (if any).
 
bool hasHamiltonian () const
 Has the Hamiltonian been computed for current w and c fields?
 
Chemical Potential Field (W Field) Components
void computeWc ()
 Compute eigenvector components of the current w fields.
 
DArray< RField< D > > const & wc () const
 Get all eigenvector components of the current w fields.
 
RField< D > const & wc (int a) const
 Get one eigenvector component of the current w fields.
 
bool hasWc () const
 Are eigen-components of current w fields valid ?
 
Monomer Concentration Field (C-Field) Components
void computeCc ()
 Compute eigenvector components of the current c fields.
 
DArray< RField< D > > const & cc () const
 Get all eigenvector components of the current c fields.
 
RField< D > const & cc (int a) const
 Get one eigenvector component of the current c fields.
 
bool hasCc () const
 Are eigen-components of current c fields valid ?
 
Functional Derivatives of H[W]
void computeDc ()
 Compute functional derivatives of the Hamiltonian.
 
DArray< RField< D > > const & dc () const
 Get all of the current d fields.
 
RField< D > const & dc (int i) const
 Get one eigenvector component of the current d fields.
 
bool hasDc () const
 Are the current d fields valid ?
 
Utilities for moves
void saveState ()
 Save a copy of the fts move state.
 
void restoreState ()
 Restore the saved copy of the fts move state.
 
void clearState ()
 Clear the saved copy of the fts state.
 
Miscellaneous
System< D > & system ()
 Get parent system by reference.
 
Randomrandom ()
 Get random number generator by reference.
 
bool hasCompressor () const
 Does this Simulator have a Compressor?
 
Compressor< D > & compressor ()
 Get the compressor by reference.
 
bool hasPerturbation () const
 Does this Simulator have a Perturbation?
 
Perturbation< D > const & perturbation () const
 Get the associated Perturbation by const reference.
 
Perturbation< D > & perturbation ()
 Get the perturbation factory by non-const reference.
 
bool hasRamp () const
 Does this Simulator have a Ramp?
 
Ramp< D > const & ramp () const
 Get the associated Ramp by const reference.
 
Ramp< D > & ramp ()
 Get the ramp by non-const reference.
 
- Public Member Functions inherited from Util::ParamComposite
 ParamComposite ()
 Constructor.
 
 ParamComposite (const ParamComposite &other)
 Copy constructor.
 
 ParamComposite (int capacity)
 Constructor.
 
virtual ~ParamComposite ()
 Virtual destructor.
 
void resetParam ()
 Resets ParamComposite to its empty state.
 
virtual void readParam (std::istream &in)
 Read the parameter file block.
 
virtual void readParamOptional (std::istream &in)
 Read optional parameter file block.
 
virtual void writeParam (std::ostream &out) const
 Write all parameters to an output stream.
 
virtual void load (Serializable::IArchive &ar)
 Load all parameters from an input archive.
 
virtual void loadOptional (Serializable::IArchive &ar)
 Load an optional ParamComposite.
 
virtual void loadParameters (Serializable::IArchive &ar)
 Load state from archive, without adding Begin and End lines.
 
virtual void save (Serializable::OArchive &ar)
 Saves all parameters to an archive.
 
void saveOptional (Serializable::OArchive &ar)
 Saves isActive flag, and then calls save() iff isActive is true.
 
void readParamComposite (std::istream &in, ParamComposite &child, bool next=true)
 Add and read a required child ParamComposite.
 
void readParamCompositeOptional (std::istream &in, ParamComposite &child, bool next=true)
 Add and attempt to read an optional child ParamComposite.
 
template<typename Type >
ScalarParam< Type > & read (std::istream &in, const char *label, Type &value)
 Add and read a new required ScalarParam < Type > object.
 
template<typename Type >
ScalarParam< Type > & readOptional (std::istream &in, const char *label, Type &value)
 Add and read a new optional ScalarParam < Type > object.
 
template<typename Type >
CArrayParam< Type > & readCArray (std::istream &in, const char *label, Type *value, int n)
 Add and read a required C array parameter.
 
template<typename Type >
CArrayParam< Type > & readOptionalCArray (std::istream &in, const char *label, Type *value, int n)
 Add and read an optional C array parameter.
 
template<typename Type >
DArrayParam< Type > & readDArray (std::istream &in, const char *label, DArray< Type > &array, int n)
 Add and read a required DArray < Type > parameter.
 
template<typename Type >
DArrayParam< Type > & readOptionalDArray (std::istream &in, const char *label, DArray< Type > &array, int n)
 Add and read an optional DArray < Type > parameter.
 
template<typename Type , int N>
FArrayParam< Type, N > & readFArray (std::istream &in, const char *label, FArray< Type, N > &array)
 Add and read a required FArray < Type, N > array parameter.
 
template<typename Type , int N>
FArrayParam< Type, N > & readOptionalFArray (std::istream &in, const char *label, FArray< Type, N > &array)
 Add and read an optional FArray < Type, N > array parameter.
 
template<typename Type , int N>
FSArrayParam< Type, N > & readFSArray (std::istream &in, const char *label, FSArray< Type, N > &array, int size)
 Add and read a required FSArray < Type, N > array parameter.
 
template<typename Type , int N>
FSArrayParam< Type, N > & readOptionalFSArray (std::istream &in, const char *label, FSArray< Type, N > &array, int size)
 Add and read an optional FSArray < Type, N > array parameter.
 
template<typename Type >
CArray2DParam< Type > & readCArray2D (std::istream &in, const char *label, Type *value, int m, int n, int np)
 Add and read a required CArray2DParam < Type > 2D C-array.
 
template<typename Type >
CArray2DParam< Type > & readOptionalCArray2D (std::istream &in, const char *label, Type *value, int m, int n, int np)
 Add and read an optional CArray2DParam < Type > 2D C-array parameter.
 
template<typename Type >
DMatrixParam< Type > & readDMatrix (std::istream &in, const char *label, DMatrix< Type > &matrix, int m, int n)
 Add and read a required DMatrix < Type > matrix parameter.
 
template<typename Type >
DMatrixParam< Type > & readOptionalDMatrix (std::istream &in, const char *label, DMatrix< Type > &matrix, int m, int n)
 Add and read an optional DMatrix < Type > matrix parameter.
 
template<typename Type >
DSymmMatrixParam< Type > & readDSymmMatrix (std::istream &in, const char *label, DMatrix< Type > &matrix, int n)
 Add and read a required symmetrix DMatrix.
 
template<typename Type >
DSymmMatrixParam< Type > & readOptionalDSymmMatrix (std::istream &in, const char *label, DMatrix< Type > &matrix, int n)
 Add and read an optional DMatrix matrix parameter.
 
BeginreadBegin (std::istream &in, const char *label, bool isRequired=true)
 Add and read a class label and opening bracket.
 
EndreadEnd (std::istream &in)
 Add and read the closing bracket.
 
BlankreadBlank (std::istream &in)
 Add and read a new Blank object, representing a blank line.
 
void loadParamComposite (Serializable::IArchive &ar, ParamComposite &child, bool next=true)
 Add and load a required child ParamComposite.
 
void loadParamCompositeOptional (Serializable::IArchive &ar, ParamComposite &child, bool next=true)
 Add and load an optional child ParamComposite if isActive.
 
template<typename Type >
ScalarParam< Type > & loadParameter (Serializable::IArchive &ar, const char *label, Type &value, bool isRequired)
 Add and load a new ScalarParam < Type > object.
 
template<typename Type >
ScalarParam< Type > & loadParameter (Serializable::IArchive &ar, const char *label, Type &value)
 Add and load new required ScalarParam < Type > object.
 
template<typename Type >
CArrayParam< Type > & loadCArray (Serializable::IArchive &ar, const char *label, Type *value, int n, bool isRequired)
 Add a C array parameter and load its elements.
 
template<typename Type >
CArrayParam< Type > & loadCArray (Serializable::IArchive &ar, const char *label, Type *value, int n)
 Add and load a required CArrayParam< Type > array parameter.
 
template<typename Type >
DArrayParam< Type > & loadDArray (Serializable::IArchive &ar, const char *label, DArray< Type > &array, int n, bool isRequired)
 Add an load a DArray < Type > array parameter.
 
template<typename Type >
DArrayParam< Type > & loadDArray (Serializable::IArchive &ar, const char *label, DArray< Type > &array, int n)
 Add and load a required DArray< Type > array parameter.
 
template<typename Type , int N>
FArrayParam< Type, N > & loadFArray (Serializable::IArchive &ar, const char *label, FArray< Type, N > &array, bool isRequired)
 Add and load an FArray < Type, N > fixed-size array parameter.
 
template<typename Type , int N>
FArrayParam< Type, N > & loadFArray (Serializable::IArchive &ar, const char *label, FArray< Type, N > &array)
 Add and load a required FArray < Type > array parameter.
 
template<typename Type , int N>
FSArrayParam< Type, N > & loadFSArray (Serializable::IArchive &ar, const char *label, FSArray< Type, N > &array, int size, bool isRequired)
 Add and load an FSArray < Type, N > array parameter.
 
template<typename Type , int N>
FSArrayParam< Type, N > & loadFSArray (Serializable::IArchive &ar, const char *label, FSArray< Type, N > &array, int size)
 Add and load a required FSArray < Type > array parameter.
 
template<typename Type >
CArray2DParam< Type > & loadCArray2D (Serializable::IArchive &ar, const char *label, Type *value, int m, int n, int np, bool isRequired)
 Add and load a CArray2DParam < Type > C 2D array parameter.
 
template<typename Type >
CArray2DParam< Type > & loadCArray2D (Serializable::IArchive &ar, const char *label, Type *value, int m, int n, int np)
 Add and load a required < Type > matrix parameter.
 
template<typename Type >
DMatrixParam< Type > & loadDMatrix (Serializable::IArchive &ar, const char *label, DMatrix< Type > &matrix, int m, int n, bool isRequired)
 Add and load a DMatrixParam < Type > matrix parameter.
 
template<typename Type >
DMatrixParam< Type > & loadDMatrix (Serializable::IArchive &ar, const char *label, DMatrix< Type > &matrix, int m, int n)
 Add and load a required DMatrixParam < Type > matrix parameter.
 
template<typename Type >
DSymmMatrixParam< Type > & loadDSymmMatrix (Serializable::IArchive &ar, const char *label, DMatrix< Type > &matrix, int n, bool isRequired)
 Add and load a symmetric DSymmMatrixParam < Type > matrix parameter.
 
template<typename Type >
DSymmMatrixParam< Type > & loadDSymmMatrix (Serializable::IArchive &ar, const char *label, DMatrix< Type > &matrix, int n)
 Add and load a required DSymmMatrixParam < Type > matrix parameter.
 
void addParamComposite (ParamComposite &child, bool next=true)
 Add a child ParamComposite object to the format array.
 
BeginaddBegin (const char *label)
 Add a Begin object representing a class name and bracket.
 
EndaddEnd ()
 Add a closing bracket.
 
BlankaddBlank ()
 Create and add a new Blank object, representing a blank line.
 
std::string className () const
 Get class name string.
 
bool isRequired () const
 Is this ParamComposite required in the input file?
 
bool isActive () const
 Is this parameter active?
 
- Public Member Functions inherited from Util::ParamComponent
virtual ~ParamComponent ()
 Destructor.
 
void setIndent (const ParamComponent &parent, bool next=true)
 Set indent level.
 
std::string indent () const
 Return indent string for this object (string of spaces).
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 Serialize this ParamComponent as a string.
 
- Public Member Functions inherited from Util::Serializable
virtual ~Serializable ()
 Destructor.
 
- Public Member Functions inherited from Util::MpiFileIo
 MpiFileIo ()
 Constructor.
 
 MpiFileIo (const MpiFileIo &other)
 Copy constructor.
 
bool isIoProcessor () const
 Can this processor do file I/O ?
 
void setIoCommunicator (MPI::Intracomm &communicator)
 Set the communicator.
 
void clearCommunicator ()
 Clear (nullify) the communicator.
 
bool hasIoCommunicator () const
 Does this object have an associated MPI communicator?
 
MPI::Intracomm & ioCommunicator () const
 Get the MPI communicator by reference.
 

Protected Member Functions

void readRandomSeed (std::istream &in)
 Optionally read a random number generator seed.
 
CompressorFactory< D > & compressorFactory ()
 Get the compressor factory by reference.
 
void readCompressor (std::istream &in, bool &isEnd)
 Read the compressor block of the parameter file.
 
PerturbationFactory< D > & perturbationFactory ()
 Get the perturbation factory by reference.
 
void readPerturbation (std::istream &in, bool &isEnd)
 Optionally read an associated perturbation.
 
void setPerturbation (Perturbation< D > *ptr)
 Set the associated perturbation.
 
RampFactory< D > & rampFactory ()
 Get the ramp factory by reference.
 
void readRamp (std::istream &in, bool &isEnd)
 Optionally read an associated ramp.
 
void setRamp (Ramp< D > *ptr)
 Set the associated ramp.
 
- Protected Member Functions inherited from Util::ParamComposite
void setClassName (const char *className)
 Set class name string.
 
void setIsRequired (bool isRequired)
 Set or unset the isActive flag.
 
void setIsActive (bool isActive)
 Set or unset the isActive flag.
 
void setParent (ParamComponent &param, bool next=true)
 Set this to the parent of a child component.
 
void addComponent (ParamComponent &param, bool isLeaf=true)
 Add a new ParamComponent object to the format array.
 
template<typename Type >
ScalarParam< Type > & add (std::istream &in, const char *label, Type &value, bool isRequired=true)
 Add a new required ScalarParam < Type > object.
 
template<typename Type >
CArrayParam< Type > & addCArray (std::istream &in, const char *label, Type *value, int n, bool isRequired=true)
 Add (but do not read) a required C array parameter.
 
template<typename Type >
DArrayParam< Type > & addDArray (std::istream &in, const char *label, DArray< Type > &array, int n, bool isRequired=true)
 Add (but do not read) a DArray < Type > parameter.
 
template<typename Type , int N>
FArrayParam< Type, N > & addFArray (std::istream &in, const char *label, FArray< Type, N > &array, bool isRequired=true)
 Add (but do not read) a FArray < Type, N > array parameter.
 
template<typename Type , int N>
FSArrayParam< Type, N > & addFSArray (std::istream &in, const char *label, FSArray< Type, N > &array, int size, bool isRequired=true)
 Add (but do not read) a FSArray < Type, N > array parameter.
 
template<typename Type >
CArray2DParam< Type > & addCArray2D (std::istream &in, const char *label, Type *value, int m, int n, int np, bool isRequired=true)
 Add (but do not read) a CArray2DParam < Type > 2D C-array.
 
template<typename Type >
DMatrixParam< Type > & addDMatrix (std::istream &in, const char *label, DMatrix< Type > &matrix, int m, int n, bool isRequired=true)
 Add and read a required DMatrix < Type > matrix parameter.
 
- Protected Member Functions inherited from Util::ParamComponent
 ParamComponent ()
 Constructor.
 
 ParamComponent (const ParamComponent &other)
 Copy constructor.
 

Protected Attributes

Random random_
 Random number generator.
 
DArray< RField< D > > wc_
 Eigenvector components of w fields on a real space grid.
 
DArray< RField< D > > cc_
 Eigenvector components of c fields on a real space grid.
 
DArray< RField< D > > dc_
 Components of d fields on a real space grid.
 
SimState< D > state_
 Previous state saved during at the beginning of a step.
 
double hamiltonian_
 Total field theoretic Hamiltonian H[W] (extensive value).
 
double idealHamiltonian_
 Ideal gas contribution (-lnQ) to Hamiltonian H[W].
 
double fieldHamiltonian_
 Field contribution (H_W) to Hamiltonian.
 
double perturbationHamiltonian_
 Perturbation to the standard Hamiltonian (if any).
 
long iStep_
 Step counter - attempted steps for which compressor converges.
 
long iTotalStep_
 Step counter - total number of attempted BD or MC steps.
 
long seed_
 Random number generator seed.
 
bool hasHamiltonian_
 Has the Hamiltonian been computed for the current w and c fields?
 
bool hasWc_
 Have eigen-components of the current w fields been computed ?
 
bool hasCc_
 Have eigen-components of the current c fields been computed ?
 
bool hasDc_
 Have functional derivatives of H[W] been computed ?
 

Additional Inherited Members

- Public Types inherited from Util::Serializable
typedef BinaryFileOArchive OArchive
 Type of output archive used by save method.
 
typedef BinaryFileIArchive IArchive
 Type of input archive used by load method.
 
- Static Public Member Functions inherited from Util::ParamComponent
static void initStatic ()
 Initialize static echo member to false.
 
static void setEcho (bool echo=true)
 Enable or disable echoing for all subclasses of ParamComponent.
 
static bool echo ()
 Get echo parameter.
 

Detailed Description

template<int D>
class Pscf::Rpc::Simulator< D >

Field theoretic simulator (base class).

The Simulator base class provides tools needed in field-theoretic simulations that are based on a partial saddle-point approximation. Subclasses designed for field theoretic Monte Carlo (MC) and Brownian dynamics (BD) simulations, named McSimulator and BdSimulator, provide more specialized algorithms and data structures needed by these two sampling methods.

The Simulator class provides functions to compute and diagonalze a projected chi matrix, functions to access components of several types of fields in a basis of eigenvectors of the projected chi matrix, and functions to compute and return contributions to the field theoretic Hamiltonian.

The analyzeChi function constructs and diagonalizes the projected chi matrix. This is a singular nMonomer x nMonomer matrix defined by evaluating the orthogonal projection of the chi matrix into the subspace of fluctuations that preserves total monomer concentration. The eigenvalues and eigenvectors of this matrix are accessed via the chiEvals and chiEvecs functions, respectively.

The computeWc, computeCc and computeDc functions compute components of various types of multi-component fields (i.e., fields that are associated with a monomer type index) in a basis of eigenvectors of the projected chi matrix. Names such as wc, cc and dc that end with a suffix "c" refer to components of multi-component fields that are defined using this eigenvector basis.

Definition at line 38 of file rpc/System.h.

Constructor & Destructor Documentation

◆ Simulator()

template<int D>
Pscf::Rpc::Simulator< D >::Simulator ( System< D > & system)

Constructor.

Parameters
systemparent System

Definition at line 37 of file rpc/fts/simulator/Simulator.tpp.

References Util::ParamComposite::setClassName(), and Pscf::Rpc::Simulator< D >::system().

◆ ~Simulator()

template<int D>
Pscf::Rpc::Simulator< D >::~Simulator ( )

Destructor.

Definition at line 69 of file rpc/fts/simulator/Simulator.tpp.

Member Function Documentation

◆ allocate()

template<int D>
void Pscf::Rpc::Simulator< D >::allocate ( )

Allocate required memory.

Values of nMonomer and the mesh dimensions must be defined in Mixture and Domain members of the parent System on entry. This function must be called by the readParameters method of any subclass.

Definition at line 95 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

Referenced by Pscf::Rpc::BdSimulator< D >::readParameters(), and Pscf::Rpc::McSimulator< D >::readParameters().

◆ readParameters()

template<int D>
void Pscf::Rpc::Simulator< D >::readParameters ( std::istream & in)
virtual

Read parameters for a simulation.

The default implementation reads a Compressor block, an optional random seed, and optional Perturbation, and an optional Ramp, in that order. This is intended to be used by subclasses designed for and BD simulations to read the shared initial parts of the parameter block format, to which blocks for MC moves or a BD step and analyzers can be added by subclasses.

Parameters
ininput parameter stream

Reimplemented from Util::ParamComposite.

Reimplemented in Pscf::Rpc::BdSimulator< D >, and Pscf::Rpc::McSimulator< D >.

Definition at line 136 of file rpc/fts/simulator/Simulator.tpp.

◆ simulate()

template<int D>
void Pscf::Rpc::Simulator< D >::simulate ( int nStep)
virtual

Perform a field theoretic Monte-Carlo simulation.

Perform a field theoretic simulation of nSteps using the partial saddle-point approximation.

The default implemention is a do-nothing placeholder that throws an error if called, and must be re-implemented by subclasses.

Parameters
nStepnumber of simulation steps

Reimplemented in Pscf::Rpc::BdSimulator< D >, and Pscf::Rpc::McSimulator< D >.

Definition at line 157 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_THROW.

◆ analyze()

template<int D>
void Pscf::Rpc::Simulator< D >::analyze ( int min,
int max,
std::string classname,
std::string filename )
virtual

Read and analyze a trajectory file.

This function uses an instance of the TrajectoryReader class specified by the "classname" argument to read a trajectory file with the specified filename. The function opens the file, performs the analysis, and closes the file before returning.

The default implemention is a do-nothing placeholder that throws an error if called, and must be re-implemented by subclasses.

Parameters
minfirst frame number
maxlast frame number
classnamename of TrajectoryReader class
filenamename of trajectory file

Reimplemented in Pscf::Rpc::BdSimulator< D >, and Pscf::Rpc::McSimulator< D >.

Definition at line 164 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_THROW.

◆ clearData()

template<int D>
void Pscf::Rpc::Simulator< D >::clearData ( )

Clear field eigen-components and hamiltonian components.

On return from this function, hasHamiltonian(), hasWc(), hasCc(), and hasDc() all return false.

Definition at line 173 of file rpc/fts/simulator/Simulator.tpp.

◆ outputTimers()

template<int D>
void Pscf::Rpc::Simulator< D >::outputTimers ( std::ostream & out)
virtual

Output timing results.

Empty default implementation.

Parameters
outoutput stream

Reimplemented in Pscf::Rpc::McSimulator< D >.

Definition at line 689 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ outputMdeCounter()

template<int D>
void Pscf::Rpc::Simulator< D >::outputMdeCounter ( std::ostream & out)
virtual

Output MDE counter.

Output the number of times the modified diffusion equation has been solved.

Parameters
outoutput stream

Definition at line 699 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ clearTimers()

template<int D>
void Pscf::Rpc::Simulator< D >::clearTimers ( )
virtual

Clear timers.

Empty default implementation.

Reimplemented in Pscf::Rpc::McSimulator< D >.

Definition at line 711 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ iStep()

template<int D>
long Pscf::Rpc::Simulator< D >::iStep ( )
inline

Return the current converged simulation step index.

Definition at line 1036 of file rpc/fts/simulator/Simulator.h.

◆ iTotalStep()

template<int D>
long Pscf::Rpc::Simulator< D >::iTotalStep ( )
inline

Return the current simulation step index.

Definition at line 1041 of file rpc/fts/simulator/Simulator.h.

◆ analyzeChi()

template<int D>
void Pscf::Rpc::Simulator< D >::analyzeChi ( )

Perform eigenvalue analysis of projected chi matrix.

Uses a chi matrix obtained from the Interaction member of the parent System.

Definition at line 286 of file rpc/fts/simulator/Simulator.tpp.

References Util::DArray< T >::allocate(), Util::DMatrix< Data >::allocate(), Util::Log::file(), and UTIL_CHECK.

◆ chiEvals()

template<int D>
DArray< double > const & Pscf::Rpc::Simulator< D >::chiEvals ( ) const
inline

Get an array of the eigenvalues of the projected chi matrix.

The projected chi matrix is given by the matrix product P*chi*P, where P is the symmetric projection matrix that projects onto the subspace orthogonal to the vector e = (1,1,...,1). The projected chi matrix is singular, and has a zero eigenvalue with associated eigenvector e. By convention, this zero eigenvalue and its eigenvector e are listed last, with index nMonomer - 1.

Definition at line 920 of file rpc/fts/simulator/Simulator.h.

◆ chiEval()

template<int D>
double Pscf::Rpc::Simulator< D >::chiEval ( int a) const
inline

Get a single eigenvalue of the projected chi matrix.

Parameters
aindex of eigenvalue (0, ... , nMonomer - 1)

Definition at line 925 of file rpc/fts/simulator/Simulator.h.

◆ chiEvecs() [1/2]

template<int D>
DMatrix< double > const & Pscf::Rpc::Simulator< D >::chiEvecs ( ) const
inline

Get the matrix of all eigenvectors of the projected chi matrix.

This function returns the entire nMonomer x nMonomer matrix of the eigenvectors of the projected chi matrix, in which each row is an eigenvector. The first (row) index of this matrix thus identifies an eigenvector, while the second (column) index identifies the monomer type associated with one component of an eigen-vector.

Each eigenvector is normalized such that the sum of the squares of its elements is equal to nMonomer, the number of monomer types. The sign of each vector is chosen so as to make the first (0) component non-negative. The last eigenvector is always the null vector e = (1,1,...,1).

For the case nMonomer = 2 of an AB system, the resulting two eigenvectors are (1,-1) and (1,1).

Definition at line 930 of file rpc/fts/simulator/Simulator.h.

◆ chiEvecs() [2/2]

template<int D>
double Pscf::Rpc::Simulator< D >::chiEvecs ( int a,
int i ) const
inline

Get one element of an eigenvector of the projected chi matrix.

See documentation of chiEvecs(), which returns the entire matrix.

Parameters
aeigenvector index (0, ..., nMonomer - 1)
imonomoner type index (0, ..., nMonomer - 1)

Definition at line 935 of file rpc/fts/simulator/Simulator.h.

◆ sc() [1/2]

template<int D>
DArray< double > const & Pscf::Rpc::Simulator< D >::sc ( ) const
inline

Get all components of the vector S.

The value of component \( S_{a} \) may be expressed using Einstein summation convention as

\[ S_{a} \equiv \frac{1}{M^2} v_{ai}\chi_{ij}e_{j} \]

for any \( a = 0, \ldots, M - 1 \), where M = nMonomer (the number of monomer types), \( e_{j} =1 \) for any j, and \( v_{ai} \) is component associated with monomer type i of eigenvector a of the projected chi matrix, with the convention \( v_{ia} = e_{i} = 1 \) for a = nMonomer - 1.

Definition at line 940 of file rpc/fts/simulator/Simulator.h.

◆ sc() [2/2]

template<int D>
double Pscf::Rpc::Simulator< D >::sc ( int a) const
inline

Get a single component of the S vector.

This function retrieves on component of the vector defined in the documentation for function sc().

Parameters
aeigenvector index (0, ..., nMonomer - 1)

Definition at line 945 of file rpc/fts/simulator/Simulator.h.

◆ computeHamiltonian()

◆ hamiltonian()

template<int D>
double Pscf::Rpc::Simulator< D >::hamiltonian ( ) const
inline

Get the Hamiltonian used in PS-FTS.

This function returns the real, thermodynamically extensive Hamiltonian used in simulations based on partial saddle-point approximation (PS-FTS).

Definition at line 952 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ idealHamiltonian()

template<int D>
double Pscf::Rpc::Simulator< D >::idealHamiltonian ( ) const
inline

Get ideal gas contribution to the Hamiltonian.

Definition at line 960 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ fieldHamiltonian()

template<int D>
double Pscf::Rpc::Simulator< D >::fieldHamiltonian ( ) const
inline

Get the quadratic field contribution to the Hamiltonian.

Definition at line 968 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ perturbationHamiltonian()

template<int D>
double Pscf::Rpc::Simulator< D >::perturbationHamiltonian ( ) const
inline

Get the perturbation to the standard Hamiltonian (if any).

A perturbation to the Hamiltonian, if any, is computed by an associated Perturbation object. When a perturbation exists, as indicated by hasPerturbation(), the perturbationHamiltonian component is added to the idealHamiltonian and fieldHamiltonian components to obtain the total value that is returned by the hamiltonian() member function.

Definition at line 976 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ hasHamiltonian()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasHamiltonian ( ) const
inline

Has the Hamiltonian been computed for current w and c fields?

Definition at line 984 of file rpc/fts/simulator/Simulator.h.

◆ computeWc()

template<int D>
void Pscf::Rpc::Simulator< D >::computeWc ( )

Compute eigenvector components of the current w fields.

Compute and store the components of the values of the w fields on nodes of a real-space grid (r-grid) in a basis of the eigenvectors of the projected chi matrix. The component field \( W_{a}({\bf r}) \) at grid point \( {\bf r} \) is given using Einstein summation by

\[ W_{a}({\bf r}) = v_{ai} w_{i}({\bf r}) / M \]

where \( w_{i}({\bf r}) \) is the w-field associated with monomer type \( i \), \( v_{ai} \) is eigenvector a of the projected chi matrix, and M = nMonomer.

Definition at line 454 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ wc() [1/2]

template<int D>
DArray< RField< D > > const & Pscf::Rpc::Simulator< D >::wc ( ) const
inline

Get all eigenvector components of the current w fields.

This function returns a DArray of fields in which each field is a chemical field component \( W_{a}({\bf r}) \) as defined in the documentation of computeWc(), for a = 0, ..., nMonomer - 1.

Definition at line 991 of file rpc/fts/simulator/Simulator.h.

◆ wc() [2/2]

template<int D>
RField< D > const & Pscf::Rpc::Simulator< D >::wc ( int a) const
inline

Get one eigenvector component of the current w fields.

See documentation of functions computeWc() and wc() for details.

Parameters
aeigenvector index in range 0 , ..., nMonomer -1

Definition at line 996 of file rpc/fts/simulator/Simulator.h.

◆ hasWc()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasWc ( ) const
inline

Are eigen-components of current w fields valid ?

Definition at line 1001 of file rpc/fts/simulator/Simulator.h.

◆ computeCc()

template<int D>
void Pscf::Rpc::Simulator< D >::computeCc ( )

Compute eigenvector components of the current c fields.

Compute and store the components of the values of the c fields on nodes of a real-space grid (r-grid) in a basis of the eigenvectors of the projected chi matrix.

Definition at line 492 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ cc() [1/2]

template<int D>
DArray< RField< D > > const & Pscf::Rpc::Simulator< D >::cc ( ) const
inline

Get all eigenvector components of the current c fields.

Each component \(C_{a}({\bf r}) \) is a point-wise projection of the monomer c fields onto a corresponding eigenvector of the projected chi matrix. The resulting value \( C_{a}({\bf r}) \) for eigen-component a at grid point \( {\bf r} \) is given using Einstein notation as

\[ C_{a}({\bf r}) = v_{ai} c_{i}({\bf r}) \]

where \( c_{i}({\bf r}) \) is the concentration / volume fraction field associated with monomer type i.

Note: The above definition \( C_{a} \) uses a different prefactor than that used to define the corresponding w-field component \( W_{a} \) given in the documentation of the function wc(), without the prefactor of 1/nMonomer. This is intentional, and is convenient for other aspects of the underlying theory.

Definition at line 1006 of file rpc/fts/simulator/Simulator.h.

◆ cc() [2/2]

template<int D>
RField< D > const & Pscf::Rpc::Simulator< D >::cc ( int a) const
inline

Get one eigenvector component of the current c fields.

This returns a reference to a field \( C_{a}({\bf r}) \) as defined in the documentation of function cc().

Parameters
aeigenvector / eigenvalue index

Definition at line 1011 of file rpc/fts/simulator/Simulator.h.

◆ hasCc()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasCc ( ) const
inline

Are eigen-components of current c fields valid ?

Definition at line 1016 of file rpc/fts/simulator/Simulator.h.

◆ computeDc()

template<int D>
void Pscf::Rpc::Simulator< D >::computeDc ( )

Compute functional derivatives of the Hamiltonian.

Compute and store the functional derivatives of the field theoretic Hamiltonian with respect to eigenvector components of the w fields (i.e., with respect to components of wc).

Definition at line 532 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ dc() [1/2]

template<int D>
DArray< RField< D > > const & Pscf::Rpc::Simulator< D >::dc ( ) const
inline

Get all of the current d fields.

This function returns an array of fields in which element a is the functional derivative of the Hamiltonian H[W] with respect to the field component \( W_{a} \) that is returned by the function wc(a).

Definition at line 1021 of file rpc/fts/simulator/Simulator.h.

◆ dc() [2/2]

template<int D>
RField< D > const & Pscf::Rpc::Simulator< D >::dc ( int i) const
inline

Get one eigenvector component of the current d fields.

Parameters
ieigenvector / eigenvalue index

Definition at line 1026 of file rpc/fts/simulator/Simulator.h.

◆ hasDc()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasDc ( ) const
inline

Are the current d fields valid ?

Definition at line 1031 of file rpc/fts/simulator/Simulator.h.

◆ saveState()

template<int D>
void Pscf::Rpc::Simulator< D >::saveState ( )

Save a copy of the fts move state.

This function and restoreState() are intended for use in the implementation of field theoretic moves. This function stores the current w fields and the corresponding Hamiltonian value. Current cc fields and dc fields are saved based on save policy. This is normally the first step of a fts move, prior to an attempted modification of the fields stored in the system w field container.

Definition at line 575 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ restoreState()

template<int D>
void Pscf::Rpc::Simulator< D >::restoreState ( )

Restore the saved copy of the fts move state.

This function and saveState() are intended to be used together in the implementation of fts moves. If an attempted Monte-Carle move is rejected or an fts move fails to converge restoreState() is called to restore the fields and Hamiltonian value that were saved by a previous call to the function saveState().

Definition at line 631 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ clearState()

template<int D>
void Pscf::Rpc::Simulator< D >::clearState ( )

Clear the saved copy of the fts state.

This function, restoreState(), and saveState() are intended to be used together in the implementation of reversible fts moves. If an attempted move is accepted, clearState() is called to indicate the need to recompute some quantities.

Definition at line 681 of file rpc/fts/simulator/Simulator.tpp.

◆ system()

◆ random()

template<int D>
Random & Pscf::Rpc::Simulator< D >::random ( )
inline

Get random number generator by reference.

Definition at line 834 of file rpc/fts/simulator/Simulator.h.

◆ hasCompressor()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasCompressor ( ) const
inline

Does this Simulator have a Compressor?

Definition at line 847 of file rpc/fts/simulator/Simulator.h.

◆ compressor()

template<int D>
Compressor< D > & Pscf::Rpc::Simulator< D >::compressor ( )
inline

Get the compressor by reference.

Definition at line 852 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ hasPerturbation()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasPerturbation ( ) const
inline

Does this Simulator have a Perturbation?

Definition at line 860 of file rpc/fts/simulator/Simulator.h.

◆ perturbation() [1/2]

template<int D>
Perturbation< D > const & Pscf::Rpc::Simulator< D >::perturbation ( ) const
inline

Get the associated Perturbation by const reference.

Definition at line 865 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ perturbation() [2/2]

template<int D>
Perturbation< D > & Pscf::Rpc::Simulator< D >::perturbation ( )
inline

Get the perturbation factory by non-const reference.

Definition at line 873 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ hasRamp()

template<int D>
bool Pscf::Rpc::Simulator< D >::hasRamp ( ) const
inline

Does this Simulator have a Ramp?

Definition at line 889 of file rpc/fts/simulator/Simulator.h.

◆ ramp() [1/2]

template<int D>
Ramp< D > const & Pscf::Rpc::Simulator< D >::ramp ( ) const
inline

Get the associated Ramp by const reference.

Definition at line 894 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ ramp() [2/2]

template<int D>
Ramp< D > & Pscf::Rpc::Simulator< D >::ramp ( )
inline

Get the ramp by non-const reference.

Definition at line 902 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ readRandomSeed()

template<int D>
void Pscf::Rpc::Simulator< D >::readRandomSeed ( std::istream & in)
protected

Optionally read a random number generator seed.

Parameters
ininput parameter stream

Definition at line 723 of file rpc/fts/simulator/Simulator.tpp.

◆ compressorFactory()

template<int D>
CompressorFactory< D > & Pscf::Rpc::Simulator< D >::compressorFactory ( )
inlineprotected

Get the compressor factory by reference.

Definition at line 839 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ readCompressor()

template<int D>
void Pscf::Rpc::Simulator< D >::readCompressor ( std::istream & in,
bool & isEnd )
protected

Read the compressor block of the parameter file.

If isEnd it true on entry, the function returns immediately.

Parameters
ininput parameter stream
isEndWas the end bracket of the Simulator block read?

Definition at line 738 of file rpc/fts/simulator/Simulator.tpp.

References Util::ParamComponent::echo(), Util::Log::file(), and UTIL_CHECK.

◆ perturbationFactory()

template<int D>
PerturbationFactory< D > & Pscf::Rpc::Simulator< D >::perturbationFactory ( )
inlineprotected

Get the perturbation factory by reference.

Definition at line 881 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ readPerturbation()

template<int D>
void Pscf::Rpc::Simulator< D >::readPerturbation ( std::istream & in,
bool & isEnd )
protected

Optionally read an associated perturbation.

If isEnd it true on entry, this function returns immediately.

Parameters
ininput parameter stream
isEndWas the end bracket of the Simulator block read?

Definition at line 758 of file rpc/fts/simulator/Simulator.tpp.

References Util::ParamComponent::echo(), Util::Log::file(), and UTIL_CHECK.

◆ setPerturbation()

template<int D>
void Pscf::Rpc::Simulator< D >::setPerturbation ( Perturbation< D > * ptr)
protected

Set the associated perturbation.

Parameters
ptrpointer to a new Perturbation<D> object.

Definition at line 776 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

◆ rampFactory()

template<int D>
RampFactory< D > & Pscf::Rpc::Simulator< D >::rampFactory ( )
inlineprotected

Get the ramp factory by reference.

Definition at line 910 of file rpc/fts/simulator/Simulator.h.

References UTIL_CHECK.

◆ readRamp()

template<int D>
void Pscf::Rpc::Simulator< D >::readRamp ( std::istream & in,
bool & isEnd )
protected

Optionally read an associated ramp.

If isEnd it true on entry, this function returns immediately.

Parameters
ininput parameter stream
isEndWas the end bracket of the Simulator block read?

Definition at line 788 of file rpc/fts/simulator/Simulator.tpp.

References Util::ParamComponent::echo(), Util::Log::file(), and UTIL_CHECK.

◆ setRamp()

template<int D>
void Pscf::Rpc::Simulator< D >::setRamp ( Ramp< D > * ptr)
protected

Set the associated ramp.

Parameters
ptrpointer to a new Ramp<D> object.

Definition at line 805 of file rpc/fts/simulator/Simulator.tpp.

References UTIL_CHECK.

Member Data Documentation

◆ random_

template<int D>
Random Pscf::Rpc::Simulator< D >::random_
protected

Random number generator.

Definition at line 630 of file rpc/fts/simulator/Simulator.h.

◆ wc_

template<int D>
DArray< RField<D> > Pscf::Rpc::Simulator< D >::wc_
protected

Eigenvector components of w fields on a real space grid.

Each field component corresponds to a point-wise projection of the monomer w fields onto an eigenvector of the projected chi matrix. The number of components is equal to the number of monomer types, nMonomer. The last component is a pressure-like field.

Definition at line 641 of file rpc/fts/simulator/Simulator.h.

◆ cc_

template<int D>
DArray< RField<D> > Pscf::Rpc::Simulator< D >::cc_
protected

Eigenvector components of c fields on a real space grid.

Each field component corresponds to a point-wise projection of the monomer c fields onto an eigenvector of the projected chi matrix. The number of components is equal to the number of monomer types, nMonomer. The last component must satisfy an incompressibility constraint.

Definition at line 652 of file rpc/fts/simulator/Simulator.h.

◆ dc_

template<int D>
DArray< RField<D> > Pscf::Rpc::Simulator< D >::dc_
protected

Components of d fields on a real space grid.

Each field component is the functional derivative of H[W] with respect to one eigenvector w-field component.

Definition at line 660 of file rpc/fts/simulator/Simulator.h.

◆ state_

template<int D>
SimState<D> Pscf::Rpc::Simulator< D >::state_
mutableprotected

Previous state saved during at the beginning of a step.

This data structure is used to restore a previous state if the compressor fails to converge or if a MC move is rejected.

Definition at line 668 of file rpc/fts/simulator/Simulator.h.

◆ hamiltonian_

template<int D>
double Pscf::Rpc::Simulator< D >::hamiltonian_
protected

Total field theoretic Hamiltonian H[W] (extensive value).

Definition at line 673 of file rpc/fts/simulator/Simulator.h.

◆ idealHamiltonian_

template<int D>
double Pscf::Rpc::Simulator< D >::idealHamiltonian_
protected

Ideal gas contribution (-lnQ) to Hamiltonian H[W].

Definition at line 678 of file rpc/fts/simulator/Simulator.h.

◆ fieldHamiltonian_

template<int D>
double Pscf::Rpc::Simulator< D >::fieldHamiltonian_
protected

Field contribution (H_W) to Hamiltonian.

Definition at line 683 of file rpc/fts/simulator/Simulator.h.

◆ perturbationHamiltonian_

template<int D>
double Pscf::Rpc::Simulator< D >::perturbationHamiltonian_
protected

Perturbation to the standard Hamiltonian (if any).

A perturbation to the Hamiltonian, if any, is computed by an associated Perturbation object and added to the ideal and field components to obtain the total hamiltonian_ value.

Definition at line 692 of file rpc/fts/simulator/Simulator.h.

◆ iStep_

template<int D>
long Pscf::Rpc::Simulator< D >::iStep_
protected

Step counter - attempted steps for which compressor converges.

Steps for which the compressor fails to converge are returned to the previous state so that another random displacement can be chosen. Attempted MC moves for which the compressor converged but which are then rejected based on a Metropolis criterion are included in iStep_. The difference iTotalStep_ - iStep_ is the number of moves that failed because the compressor failed to converge.

Definition at line 705 of file rpc/fts/simulator/Simulator.h.

◆ iTotalStep_

template<int D>
long Pscf::Rpc::Simulator< D >::iTotalStep_
protected

Step counter - total number of attempted BD or MC steps.

Definition at line 710 of file rpc/fts/simulator/Simulator.h.

◆ seed_

template<int D>
long Pscf::Rpc::Simulator< D >::seed_
protected

Random number generator seed.

Definition at line 715 of file rpc/fts/simulator/Simulator.h.

◆ hasHamiltonian_

template<int D>
bool Pscf::Rpc::Simulator< D >::hasHamiltonian_
protected

Has the Hamiltonian been computed for the current w and c fields?

Definition at line 722 of file rpc/fts/simulator/Simulator.h.

◆ hasWc_

template<int D>
bool Pscf::Rpc::Simulator< D >::hasWc_
protected

Have eigen-components of the current w fields been computed ?

Definition at line 727 of file rpc/fts/simulator/Simulator.h.

◆ hasCc_

template<int D>
bool Pscf::Rpc::Simulator< D >::hasCc_
protected

Have eigen-components of the current c fields been computed ?

Definition at line 732 of file rpc/fts/simulator/Simulator.h.

◆ hasDc_

template<int D>
bool Pscf::Rpc::Simulator< D >::hasDc_
protected

Have functional derivatives of H[W] been computed ?

Definition at line 737 of file rpc/fts/simulator/Simulator.h.


The documentation for this class was generated from the following files: